Filogeografia mitocondriale Emys orbicularis

Ecologia Molecolare (1999)

Blackwell Science, Ltd

Filogeografia mitocondriale della testuggine palustre europea, Emys orbicularis (Linnaeus 1758)

P. LENK, U. FRITZ, U. JOGER e M. WINK

Estratto

La filogenia e la filogeografia della Emys orbicularis è stata ipotizzata dalle sequenze di nucleotidi mitocondriali del gene del citocromo b analizzato dall’ordinamento del Dna e dall’analisi eteroduplex dell’RNA. All’interno della famiglia di Emydidae la classe monotipica Emys è associata ai taxa vicino-artici delle Emydoidea blandingii  e Clemmys marmorata. L’analisi di 423 individui di E. orbicularis , originati interamente nella propria zona di distribuzione, ha rivelato una significativa differenziazione intraspecifica in 20 aplotipi diversi con distribuzioni geografiche distinte. L’analisi di massima parsimonia ha prodotto una filogenia a stella con sette lignaggi principali che possono rispecchiare separazioni nel tardo Pliocene. La distribuzione dell’aplotipo esaminato da test parziali di Mantel e l’analisi di variazioni molecolari hanno rivelato una significativa conseguenza delle ere glaciali. Questa prospettiva ipotizza l’esistenza di svariati rifugi glaciali e una considerevole espansione della distribuzione nell’Olocene modulata da caratteristiche climatiche. Un ulteriore sostegno è ricavato dall’avvento di parapatria a lungo termine nei rifugi glaciali.  

Parole chiave: citocromo b, Emys orbicularis, DNA mitocondriale, parapatria, filogeografia, Pleistocene

Ricevuto 2 Febbraio 1999; revisione ricevuta 10 Giugno 1999; accettato 29 Giugno 1999

Introduzione

La fauna di testuggini palustri del paleoartico occidentale è composta da solo quattro specie ed è impoverita se paragonata all’Asia Orientale o al Nord America dove le famiglie Bataguridae e Emydidae sono abbastanza varie. Le Mauremys caspica,  M. leprosa, e M. rivulata sono le uniche rappresentanti europee della famigliaBataguridae, mentre al contrario la Emys orbicularis è un membro delle Emydidae del Nuovo Mondo. Tra le testuggini palustri, la E. orbicularis vive in una delle più grandi aree che include zone del Nord Africa, il Mediterraneo e regioni dal clima mite dell’Europa e del Medioriente fino al Mar d’Aral. Malgrado la sua vasta distribuzione la E. orbicularis è stata considerata per decenni come una specie monotipica. Sebbene una variazione di colore fosse nota da tempo (Arnold & Burton 1978), solo di recente è stata proposta una suddivisione intraspecifica in 13 sottospecie da Fritz e collaboratori (come recensito in Fritz (1998)). Mentre la zona nordica della distribuzione è abitata esclusivamente da specie designate, la maggior parte dei taxa intraspecifici avviene nel sud: Nord Africa (una sottospecie), penisola iberica (due), Sardegna (una), Corsica (una) , Francia meridionale – Italia orientale (una), Italia meridionale (una non descritta ufficialmente), costa dell’Adriatico e dell’Egeo (una), restante Asia Minore e Georgia (tre più una non descritta ufficialmente), regione Caspica (due). Questa diversità ci incoraggiò a risolvere la fitogeografia molecolare di questa specie. L’impatto del clima freddo del Pleistocene sulla fauna e flora olartica furono sostanziali e molte specie si estinsero o persero vaste aree della loro precedente distribuzione. Rettili termofili europei erano sensibili alle basse temperature e potevano sopravvivere solo in aree ristrette e con clima favorevole nelle estremità meridionali dell’Europa e nelle zone vicine, come descritto da Reinig (1937) e De Lattin (1949). Secondo i loro punti di vista gli effettivi schemi di distribuzione di molti organismi europei dipendono in larga misura dalla posizione dei rifugi glaciali e dal percorso della ricolonizzazione post-glaciale. Malgrado modelli molecolari contribuiscano notevolmente alla comprensione dei processi biogeografici, studi esaurienti sulla fauna europea sono ancora limitati (per gli animali: Wallis & Arntzen (1989), Taberlet & Bouvet (1994), Cooper et al. (1995), Santucci et al . (1998), come riassunto in Taberlet et al. (1998)). Studi sui rettili, termo-sensibili e meno mobili di altri organismi terrestri, sono finora carenti. Tuttavia del lavoro è già stato compiuto sulla fitogeografia molecolare e la filogenia delle testuggini in altre parti del mondo (Lamb et al. 1989; Avise et al1992; Bowen et al . 1992, 1994; Allard et al . 1994; Osentoski & Lamb 1995; Walker et al . 1995, 1997; Encalada et al .1996). Questi studi hanno dimostrato i meriti del DNA mitocondriale (mtDNA) nell’analisi degli schemi filogeografici delle testuggini, malgrado stime e divergenze evolutive tendono ad essere basse se paragonate ad altri vertebrati (Avise et al . 1992; Martin & Palumbi 1993). Uno studio preliminare (Lenk et al . 1998) basato su 187 esemplari ha già identificato una struttura intraspecifica significativa nella E. orbicularis di aplotipi localizzati geograficamente. Nel seguente studio presentiamo un campione di 423 individui comprendenti la maggior parte della distribuzione della specie. La relativamente vasta e fitta scala degli esemplari permette l’uso delle analisi statistiche globali per fornire una struttura per un’analisi dettagliata della storia della specie. I metodi usati sono stati l’ordinamento del DNA e l’analisi heteroduplex dell’RNA; quest’ultima è stata precedentemente adattata per quest’uso. (Lenk & Wink 1997).

Materiali e metodi

Campionamento e tecniche di laboratorio

I campioni sono stati ottenuti da 423 esemplari di Emys orbicularis e sei specie imparentate di testuggine palustre vicino-artica (genera Clemmys, Emydoidea, e Terrapene) appartenenti alla sottofamiglia emydinae (Gaffney & Meylan 1988). Sangue e tessuti muscolari (da animali conservati sotto etanolo) sono stati prelevati e raccolti come descritto in Haskell & Pokras (1994) e Arctander (1988). Tutto il DNA genomico è stato estratto seguendo i protocolli standard di proteinase K e fenolo–cloroformio (Sambrook et al. 1989). La metodologia della reazione a catena della polimerasi (PCR) è stata usata per ingrandire un frammento contenente la sequenza target (1036 nt del gene con citocromo b e 38 nt di tRNA Thr) seguendo una procedura descritta precedentemente (Lenk et al.1998). Gli iniettori usati sono stati mt-A (Lenk & Wink 1997) combinati con CR12H (Lenk & Wink 1997) o H-15909 (5AGGGTGGAGTCTTCAGTTTTTGGTTTACAAGACCAATG-3). Prima dell’ordinamento del DNA i risultati del PCR sono stati esaminati per identificare sequenze identiche che potevano essere assegnate ad aplotipi particolari. L’analisi heteroduplex dell’RNA è stato usato con l’aiuto del Mismatch Detect II Kit (Ambion 1418) come descritto in Lenk & Wink (1997). I risultati del PCR di almeno un esemplare per località sono stati ordinati come descritto in Lenk et al . (1998) o utilizzando il kit di ordinamento del ciclo di iniettori di etichettamento fosforescente Thermo Sequenase con 7-deaza-dGTP (Amersham Life Science, RPN 2438/RPN 2538) insieme ad un elaboratore in sequenza automatizzato (Pharmacia, ALF-Express). Gli iniettori di sequenza erano mt-A, mt-B, mt-C, mt-D (Wink 1995), L-14943 (Lenk et al. 1998), L-15601 (5-CCATTCTACGCTCAATCCC-3), e H-15909. Tutte le sequenze sono state lette ed allineate manualmente. I dati della sequenza del nucleotide qui registrati compariranno nel DDBJ/EMBL/GenBank

Nucleotide Sequence Database sotto il numero di collocamento nos AJ131407–AJ131432.

Analisi Filogenetica e statistica

Il programma pacchetto mega (Kumar et al. 1993) è stato usato per valutare le distanze genetiche e calcolare le statistiche di sequenza. Ricerche di massima parsimonia e massima verosimiglianza sono state effettuate attraverso l’approccio di ricerca euristica di * 4.0 (Swofford 1998) usando l’algoritmo di scambio dell’albero di bisezione-riconnessione. Per la massima parsimonia sono state applicati i parametri di default. Le assunzioni del procedimento di massima verosimiglianza sono state specificate per permettere sei tipi di sostituzioni (Lanave et al.1994) e una variazione percentuale infra-sito con distribuzione gamma (Yang 1994) con quattro categorie (parametri di forma da valutare per il set di dati). Tutti i calcoli sono stati condotti con composizioni variabili dell’outgroup: tutte le specie vicino-artiche insieme, separate o senza l’outgroup. Delle analisi bootstrap (500 repliche) sono state svolte per esaminare la robustezza delle biforcazioni ad albero con l’algoritmo di massima parsimonia. Per avere un’idea delle tendenze filogeografiche che potrebbero aver determinato l’espansione post-glaciale, il presente modello di distribuzione è stato analizzato usando test parziali di Mantel (Mantel 1967; Thorpe 1991). La struttura parziale filogeografica con schemi previsti da diverse ipotesi, mentre simultaneamente si escludevano gli effetti disorientanti dell’intercorrelazione tra ipotesi (Thorpe et al. 1994). Primo, le identità genetiche delle località sono state rilevate per un input in un formato di matrici di distanza (basato sulle distanze patristiche di un albero senza radice di parsimonia). Sono state raggruppate località geograficamente distanti meno di 50 km. Vari modelli di distribuzione putativi sono serviti come ipotesi di verifica rappresentanti gli stadi finali di un processo di colonizzazione. Queste ricostruzioni sono state fatte assegnando ciascun lignaggio a un rifugio specifico, definendo i più probabili percorsi di colonizzazione per evitare barriere fisiche (Fig. 1) e utilizzando scenari alternativi per controllare le ricostruzioni di colonizzazione. I scenari erano: (1) l’andamento di espansione costante attraverso tutti i lignaggi e i percorsi; (2) come (1), ma allo stesso tempo i lignaggi nordici ipotizzati categoricamente superiori nell’area nord di distribuzione; il confine nord controllato temporaneamente da un fattore variabile parallelo alla latitudine geografica (3); radialmente (4); con inclinazione di 45 (5); o 45 d’inclinazione (6) rispetto alla latitudine geografica (Fig. 1). La posizione sul percorso dove due fronti s’incontrano segna il confine di distribuzione tra due gruppi campione adiacenti. Le identità teoretiche di tutte le località sono state ri-campionate secondo queste ipotesi e matrici di distanza alternative sono state calcolate come descritto sopra. Associazioni tra queste e la matrice dipendente sono state esaminate con test parziali di Mantel con 10 000 permutazioni usando un programma sviluppato da R. Thorpe. Una procedura Bonferroni (Rice 1989) sequenziale è stata applicata a tutti i valori –P, per correggere il numero di test simultanei. La struttura genetica della popolazione è stata dedotta dall’analisi della variazione molecolare (amova ; Excoffier et al. 1992) fornito nel programma pacchetto arlequin 1.0 (Schneider et al. 1997) usando entrambe le statistiche dell’aplotipo (basate solo sulle frequenze dell’aplotipo) e statistiche di sequenza (che incorporano divergenze di sequenza tra aplotipi). Il programma calcola equivalenti di statistiche-F e componenti di variazione in entrambe le modalità. Schemi spaziali ritenuti significativi nei test parziali di Mantel sono stati usati per definire gruppi campione. Sono stati esaminati componenti di variazione e valori tra gruppi campione geografici, tra le popolazioni all’interno dei gruppi campione geografici e tra le popolazioni con 10 000 repliche.

Fig. 1 Un modello per ricostruire il processo di colonizzazione post-glaciale come usato per i test parziali di Mantel. Mostra le località approssimative dei rifugi glaciali (grigio)  e percorsi di colonizzazione putativi (linee in grassetto) che sono stati definiti considerando la fisiogeografia della distribuzione della specie. Il riquadro in alto a destra mostra i limiti temporanei per controllare i fronti d’espansione lungo i percorsi secondo gli scenari 3-6 (vedi testo). La modalità di spostamento è indicata dalle frecce.

Risultati

Variazione dei nucleotidi e distanze genetiche

Sono stati osservati venti aplotipi, basati sul citocromo b e sequenze di tRNA Thr tra i 423 esemplari di Emys orbicularis. Di 1074 siti allineati, 50 erano variabili con 47 transizioni e tre transversioni; 46 siti sono stati informativi dal punto di vista della parsimonia. Divergenze di sequenza (Tamura & Nei 1993) tra gli aplotipi distribuiti da 0.09% a 1.71% (Tabella 1). Quando sei specie di testuggini palustri vicino-artiche sono state incluse, 242 siti sono diventati variabili includendo 183 transizioni, 37 transversioni, e 22 posizioni con transizioni più transversioni; 132 siti sono stati informativi di parsimonia. Stime di distanza genetica (Tabella 1) si sono distribuite tra 5.79% (Clemmys Muhlenbergi e C. insculpta ) e 11.45% (C. guttata e E. orbicularis). Gli elementi leggeri avevano le seguenti composizioni di nucleotidi: A, 30.4–31.6%; C, 29.9–31.7%; G, 11.7–12.5%; e T, 25.3–26.9%. Il forte pregiudizio contro la guanina è tipico del mitocondriale ma non dei geni nucleari (e.g. Desjardins & Morais 1990). Non sono state rilevate cancellazioni, aggiunte o inversioni.

Tabella 1

Tabella di distanza genetica dei lignaggi della Emys orbicularis e di sei specie imparentate. Per la E. orbicularis sono stati selezionati gli aplotipi che sono apparsi ancestrali ai rispettivi lignaggi secondo l’albero di parsimonia. Le stime di divergenza genetica (Tamura & Nei 1993) sono presentati nella parte sotto a sinistra, il numero assoluto di sostituzioni e il numero di transizioni (tra parentesi) nella parta alta a destra. La diagonale presenta le stime di divergenza massima in un lignaggio. (Tamura & Nei 1993)

Relazioni filogenetiche

Le analisi di massima parsimonia e massima verosimiglianza hanno prodotto alberi molto concordanti. Nel clade delle Emys sette dei lignaggi principali, indicati con numeri romani, erano inequivocabilmente rilevati da entrambi i metodi. Ciascun lignaggio includeva da uno a molteplici aplotipi strettamente imparentanti, di cui la monofila era supportata da alti valori bootstrap. Tuttavia solo una debole risoluzionecladogenetica è stata ottenuta tra questi lignaggi come indicato rispettivamente o da rami interni corti o da un basso supporto  bootstrap (Fig. 2). L’unica eccezione è stata il cladecomprendente i lignaggi I e II che erano stati definiti come un gruppo monofiletico. Malgrado un minor supporto da analisi bootstrap il lignaggio III tendeva a prendere una posizione basale nella E. orbicularis in tutte le ricostruzioni. Se erano soggetti all’analisi di massima parsimonia solo gli aplotipi della Emys, si produceva un unico albero senza radice di massima parsimonia di 55 scalini (Fig. 3). Esso mostrava una filogenia a stella con sei rami lunghi. Biforcazioni secondarie significative appaiono nei rami che portano ai lignaggi I e II. Tra tutti i lignaggi basali, la V mostrava la minor lunghezza del ramo. Le C. marmorata e Emydoidea blandingii si mostravano come i parenti più prossimi della E. orbicularis. Le tre specie rappresentavano un clade monofiletico ben supportato. Tuttavia la posizione della C. marmorata era in conflitto in entrambi i metodi. La massima verosimiglianza la collocava come un taxon sorella della Emys (non mostrata), mentre la massima parsimonia indicava una relazione più stretta con la E. blandingii . Altri membri della specie Clemmys e Terrapene si collocavano nei cladi basali, indicando che la Clemmys rappresenta un gruppo parafiletico e che questa specie potrebbe richiedere una revisione tassonomica. Se erano utilizzati degli outgroup variabili si otteneva lungo i rami III o IV lo stesso ordine intraspecifico ma con diverse posizioni delle radici (Fig. 3). Le C. marmorata o E. blandingii, i parenti più stretti, producevano sistematicamente alberi con il lignaggio III come ramo basale. Tuttavia tutte le posizioni delle radici erano per la maggior parte acentriche, se paragonate con la divisione basale dei lignaggi principali della E. orbicularis. Il radicamento dell’outgroup ha portato a una significativa riduzione del ramo basale che appariva innaturale (forse a causa di molteplici inversioni come indicato da indici di consistenza sorprendentemente diverse nelle Fig 2 e 3). Per questa ragione la posizione basale del lignaggio III (Fig. 2) rimane problematica malgrado sia supportata da 63% repliche bootstrap.

 

Fig. 2 Un filogramma di consenso della regola del 50% di maggioranza dimostrante i risultati dell’analisi di massima parsimonia se tutte le specie vicino-artiche venissero poste come un outgroup. Inizialmente vennero trovati i 21 alberi più corti con 378 scalini in lunghezza (CI: 0.72, HI: 0.28, RI = 0.74, RC: 0.53). I valori bootstrap provenienti da 500 repliche sono indicati a ciascun nodo dell’albero o gli schemi di biforcazione alla destra.

 

Fig. 3 Un albero di parsimonia senza radice esclusivamente di tutti gli aplotipi di Emys orbicularis. E’ stato ottenuto un unico albero di maggiore parsimonia di 55 scalini in lunghezza (CI: 0.91, HI: 0.09, RI: 0.96, RC: 0.87). Ciascun scalino tra due cerchi rappresenta una sostituzione di nucleotide. Cerchi neri e simboli indicano rispettivamente aplotipi mancanti e esistenti. Le frecce indicano le potenziali posizioni delle radici quando sono state usate specie di outgroup diversi.

La distribuzione geografica degli aplotipi

Come indicato in Fig. 4 l’estesa sequenza di polimorfismo rilevata nelle E. orbicularis era caratterizzata da molti aplotipi localizzati. Erano situati nell’Europa dell’est e in Asia minore (lignaggio I), Europa centrale e Balcanico centrale (II), Italia meridionale (III), intorno al Mar Adriatico (IV), la costa sud-occidentale del Mediterraneo (V), la penisola iberica e il nord Africa (VI) e la regione Caspica (VII). Alcuni lignaggi mostravano una suddivisione su scala più sottile: nell’albero di parsimonia (Fig. 3) l’aplotipo VIc del nord Africa appariva ancestrale rispetto all’aplotipo VIa, b, d della penisola iberica; gli aplotipi IVc e IVb della Grecia sud-occidentale erano spazialmente separati dal IVa che occupava la rimanente distribuzione del lignaggio IV: nella Germania dell’est il diffusissimo aplotipo IIa era rimpiazzato dal discendente putativo IIb; in Asia minore Ic e Id sembravano occupare la parte più centrale, mentre Ib e Ia erano limitati alla costa. Il V era il solo lignaggio che non mostrava una suddivisione geografica.

Test parziali di Mantel

Siccome le calibrature temporali avevano suggerito, sulla base di distanze genetiche, (vedi sotto) un’origine per ciascuno dei sette lignaggi, sarebbero dovuti esistere sette diversi aplotipi dopo l’ultima fase fredda almeno nei rifugi meridionali. Sulla base delle loro limitate distribuzioni cinque dei sette lignaggi potevano inequivocabilmente essere assegnati a rifugi specifici (Penisola iberica, Italia, Grecia, Asia Minore, regione Caspica). L’assegnamento per due lignaggi (II, V) rimaneva ambiguo. Perciò prima di esaminare scenari alternativi dovevano essere analizzati gli arrangiamenti glaciali dei lignaggi mitocondriali. Sono stati allora proposti ed analizzati simultaneamente sotto ciascun scenario sette potenziali arrangiamenti (tipi a–g; Table 2). E’ stata trovata una congruenza attraverso tutti gli scenari per rifiutare l’ipotesi basata sul tipo di arrangiamento (Tabella 3). L’assegnazione del lignaggio V a un rifugio italiano e del II a un rifugio Greco, come suggerito sotto l’arrangiamento del tipo a, ha prodotto l’unico modello con un’associazione rilevante al rimanente schema filogeografico. Quando le associazioni delle sei ipotesi di espansione sono state esaminate simultaneamente sotto l’arrangiamento di tipo a, tutte le ipotesi sono state rifiutate tranne una, come indicato nella tabella 3, in basso. Perciò l’unico scenario che manteneva un significato in combinazione col tipo di arrangiamento era il 4. La struttura genetica della popolazione secondo l’ipotesi 4 (vedi Fig. 4) suggerita con l’amova ha rilevato una significativa divisione geografica come evidenziato sia dalla frequenza dell’aplotipo che dalla sequenza statistica. Tuttavia sulla base della sequenza di statistica era evidente una cospicua differenziazione di popolazione come indicato sui ST  e componenti di variabilità (Tabella 4). Mentre il 38.8% del totale della variazione era spiegata dalle differenze di frequenza dell’aplotipo tra gruppi, il valore comparabile era del 62.1% quando veniva considerata la divergenza di sequenza. Al contrario, la variazione tra popolazioni era più alta quando erano considerate le frequenze di aplotipo. Questo significativo cambiamento era causato da  numerosi aplotipi strettamente imparentati in molti cladi che fornivano una minore differenziazione di sequenza, ma contribuivano notevolmente alla diversità dell’aplotipo. Quindi la E. orbicularis è una specie che mostra schemi di divergenza discontinui nella distribuzione geografica. Questo è probabilmente dovuto a barriere estrinseche a lungo termine al flusso genetico corrispondente alla categoria Ia di Avise et al . (1987).

Fig. 4 Distribuzione geografica di 313 aplotipi di Emys orbicularis. I numeri vicino ai simboli indicano la frequenza di aplotipi per località (simboli senza numeri rappresentano singoli esemplari), i simboli nei riquadri segnano le popolazioni polimorfiche, i cerchi tratteggiati indicano località inesatte. Linee tratteggiate segnano la divisione di distribuzione secondo l’ipotesi 4a usato per l’amova. Il riquadro in alto a sinistra indica i simboli degli aplotipi, il riquadro in alto a destra mostra la distribuzione recente della E. orbicularis. Oltre a questi 313 esemplari sono stati ottenuti dati da altri 110 provenienti da località della Spagna: Menorca (V19), Mallorca (V12, IIa8); Italia: Castel Porziano (IVa15, V5); Francia: Camargue (IIa), Lyon (IIa); Danimarca, diverse località Ia6, Ib, IId); e Germania, diverse località (Ia14, Ib, IIa10, IIIa, IIIb, IVa11, V2, VIa), ma non erano utilizzabili per analisi filogeografiche (vedi Lenk et al. (1998)) e quindi sono state escluse.

 

Tabella 2 Sette potenziali tipi di arrangiamento spaziale (a–g) di lignaggi mitocondriali durante l’ultima glaciazione (come mostrato in Fig. 1) come utilizzato per i test parziali di Mantel.

Tabella 3 Test parziali di associazione di Mantel per esaminare il processo di espansione post-glaciale: insignificanti probabilità di ipotesi per la regressione parziale tra la composizione genetica spaziale e ipotesi causali. Le ipotesi sono presentate da tipi diversi di arrangiamenti di lignaggi mitocondriali nei rifugi glaciali (a–g; Tabella 1) in combinazione con scenari putativi che modulano l’espansione post-glaciale (1–6, Fig. 1). Ciascun test di Mantel implica 10 000 randomizzazioni. * indica significato P < 0.05 dopo una correzione sequenziale di Bonferroni. Le sei colonne della tabella in alto presentano i risultati di sei test parziali di Mantel per esaminare l’arrangiamento di lignaggio più probabile durante l’ultima glaciazione. Potrebbero essere ottenute associazioni significative alla presente distribuzione di aplotipi in quelle ricostruzioni che sono state basate su un solo tipo di arrangiamento. La parte inferiore mostra le probabilità di scenario 1–6 basate sull’arrangiamento di tipo a. La ricostruzione basata sullo scenario 4 e l’arrangiamento di tipo a è l’unica ipotesi che mantiene un’associazione rilevante rispetto al presente schema di distribuzione degli aplotipi.

Tabella 4 Variazione mitocondriale in Emys orbicularis secondo le frequenze di aplotipo e sequenze di divergenza. Il livello di variazione genetica delle tre fonti, tra gruppi, tra popolazioni nei gruppi e nelle popolazioni sono state esaminate dall’amova. Sono indicate le componenti di variazione e le percentuali di variazione di ciascun livello gerarchico. La parte inferiore della tabella contiene gli indici di fissazione e i significati degli indici di fissazione oltre ai componenti della variazione dopo i test di permutazione.

Discussione

L’origine della Emys orbicularis

Un’analisi filogenetica di alcune testuggini del genere emydid (Bickham et al. 1996) basata su sequenze di 16S rRNA ha già rivelato che la specie monotipica Emys è un gruppo sorella delle Clemmys marmorata ed Emydoidea blandingii. Le nostre scoperte basate sui geni di citocromo b e di tRNAThr avvalorano questo studio identificando le C. marmorata e E. blandingii come i più vicini taxa rimasti alle Emys, malgrado filogeni basati morfologicamente non sono concordanti (Gaffney & Meylan 1988; Burke et al. 1996). Poiché la E. orbicularis è l’unica rappresentante nel vecchio mondo della famiglia di testuggini palustri Emydidae altrimenti rigorosamente appartenenti al nuovo mondo, è plausibile un centro di radiazione vicino-artica per questo gruppo (Fritz 1998). I resti fossili più antichi di Emys in Kazakhstan sono databili al medio Miocene (12 milioni di anni; Chkhikvadze 1989). L’incesto putativo di questa specie, tuttavia, doveva superare il Ponte di Bering molto prima, perché divenne climaticamente invalicabile circa 20 milioni di anni fa. Questa ipotesi è in gran parte d’accordo con le ipotesi basate su serpenti (Szyndlar 1991) e anfibi fossili (Maxson et al. 1975). Hutchison (1981) propose che gli antenati della Emys entrarono in Asia dai 15 ai 29 milioni di anni fa. Supponendo che le  Emys, C. marmorata, e Emydoidea, si differenziarono 20 milioni di anni fa, può essere ottenuta una percentuale di sostituzione del 0.3–0.4% di divergenza di sequenza per un milione di anni. Questo valore è in accordo con altre scoperte sull’evoluzione dell’mtDNA delle testuggini (0.4% divergenza di sequenza/milioni di anni; Avise et al. 1992; Bowen et al. 1993; Lamb & Lydeard 1994). Secondo questa calibratura la divergenza che porta ai lignaggi rimanenti di Emys avvenne circa 3.0–4.1 milioni di anni fa, visto che la media della distanza genetica tra i sette lignaggi è di x¯p = 1.23%. Considerando che la E. orbicularis vive in aree del Mediterraneo e in climi miti, le condizioni tropicali dell’era del Pliocene erano sfavorevoli e impedirono un’espansione precedente attraverso l’Europa. Tuttavia si instaurò in Europa un clima più favorevole con cambiamenti di stagione più significativi 3.2 milioni di anni fa (Suc 1984). E’ possibile che questo importante cambiamento provocò una radiazione improvvisa, come dimostrato dalla filogenia a stella in Fig. 3. In effetti la divergenza di sequenza media tra i lignaggi principali (1.23%), quando calibrata contro 3.2 milioni di anni suggerirebbe una percentuale di evoluzione del 0.38% per milioni di anni che concorda con la nostra calibratura precedente.

La storia quaternaria della E. orbicularis

Durante le oscillazioni climatiche del Pleistocene la distribuzione della E. orbicularis diventò probabilmente frammentaria con isolati lungo una sottile fascia attraverso la Francia meridionale. Questa fascia è stata plasmata dai climi freddi al nord (Frenzel 1967) e da sbarramenti creati da habitat inappropriati (il mar Mediterraneo e i deserti del nord Africa) verso sud. L’Europa meridionale tuttavia è spesso composta da blocchi di montagne e insenature marine che possono contribuire a una distribuzione frammentaria e ad un isolamento genetico. La E. orbicularis rispecchia questa situazione in una massima diversità di aplotipo su un transect da Ovest ad Est che si estende attraverso l’Europa meridionale e il Medioriente (Fig. 4). Test parziali di Mantel (Tabella 3) indicano che l’Italia meridionale (V e III) e la Grecia (IV and II) servirono simultaneamente come rifugi per due lignaggi distinti. In teoria, due ragioni sono possibili: (i) i suddetti rifugi ospitavano assembramenti polimorfici e uno smistamento di lignaggio durante l’espansione avrebbe prodotto le attuali popolazioni polimorfiche; (ii) i rifugi erano suddivisi in sottorifugi allo/parapatrici che erano già costituiti da popolazioni polimorfiche. Questo è forse più probabile del mantenimento di un’unica popolazione polimorfica in rifugi glaciali. Vista l’eredità unigenitoriale dell’mtDNA, Avise et al. (1987) discussero che l’evoluzione degli aplotipi si auto-diminuisce a causa dell’eliminazione continua dei genomi mitocondriali paterni in ogni nuova generazione. E’ da aspettarsi che questa tendenza sia osservata durante i periodi di distribuzione frammentaria e di riduzione della densità di popolazione (Hewitt 1996). La vicarianza di lignaggi relativamente vecchi in Italia e in Grecia non solo conferma l’ipotesi dei rifugi (e.g. Hewitt 1996) della specie europea per sopravvivere alle glaciazioni, ma propone anche una significante estensione di queste popolazioni e una loro stabilità per lunghi lassi di tempo. Fluttuazioni nelle popolazioni causate da cambiamenti climatici aumentano il rischio di estinzioni e sostituzioni da parte di assemblaggi adiacenti e quindi avrebbero contribuito alla perdita della diversità genetica. Tuttavia questi lignaggi vicarianti in Italia e in Grecia sostengono la prospettiva di condizioni durevolmente favorevoli nelle estremità meridionali fin dal Pliocene. Barriere effettive dovrebbero rievocare tali rotture genetiche. L’Italia e la Grecia sono state frammentate da montagne ed insenature marine almeno dal Pliocene (e.g. Schröder 1986; Doutsos et al. 1987; Santucci et al.1996) agendo possibilmente come barriere al flusso genetico. Eppure corridoi costieri avrebbero potuto incoraggiare uno scambio genetico e neppure gli stretti marini rappresentano barriere assolute per le E. orbicularis come indicato da aplotipi strettamente imparentati (Fig. 4) da entrambe le parti dello Stretto di Gibilterra (3.5–3.0 milioni di anni fa; Rögl & Steininger 1983). Wright (1978) e Endler (1977) discussero che l’evoluzione poteva agire nelle specie con popolazioni semi-localizzate legate da un basso flusso genetico. Quindi ipotizziamo che l’osservata vicarianza sia stata mantenuta sotto condizioni allo/parapatriche. Il sinergismo della bassa mobilità e un ridotto scambio genetico appare abbastanza forte da evocare una distinzione genetica e prevenire l’amalgamarsi di raggruppamenti genetici.

La sovrapposizione di zone di mtDNA 

I nostri dati dimostrano che è possibile un’estesa simpatria mitocondriale tra lignaggi mitocondriali adiacenti, inclusa una zona nella penisola iberica nord-orientale e una nei Balcani meridionali. In generale, l’mtDNA di testuggini palustri e di terra non rivela una zona estesa di sovrapposizione ed è di regola una solida struttura geografica (Lamb et al. 1989; Lamb & Avise 1992; Osentoski & Lamb 1995; Walker et al. 1995). Tuttavia alcuni di questi studi hanno mostrato che aplotipi strettamente imparentati possono condividere una stessa distribuzione. Nella E. orbicularis è stato osservato uno schema simile nella regione dell’Egeo dove si incontrano aplotipi Ia, Ib, IIa, e IV. La massima sovrapposizione è stata trovata tra aplotipi imparentati come Ia/Ib e IIa/Ib (Fig. 4). Lignaggi più distinti (II, V, and VI) s’incontrano in una zona di contatto secondaria nella Spagna nord-orientale (Fig. 4). IIa è originata dalla regione dell’Egeo e la V dall’Italia meridionale. Entrambi i rifugi sono abbastanza lontani dalla penisola iberica nord-orientale. Questo indica che il lignaggio iberico indigeno VI si è sviluppato in minima parte, mentre gli aplotipi alloctoni II e V sarebbero penetrati nella penisola iberica dopo aver superato i Pirenei. Non è lo scopo di questo studio paragonare le diverse zone di contatto della E. orbicularis, ma vorremmo evidenziare che questa significativa sovrapposizione è situata lontano dai putativi rifugi centrali meridionali. Forse sono derivati da estesi movimenti di distribuzione tra forme con diverse origini e storie (vedi sotto). 

La via della re-immigrazione

In generale, gli schemi filogeografici sono considerati il risultato di un processo plurifattoriale, essendo piuttosto arbitrari e variabili tra le specie (Taberlet et al. 1998). Il nostro studio rappresenta un tentativo di riconoscimento delle tendenze nella filogeografia della testuggine palustre europea, applicando allo stesso tempo modelli filogeografici semplici con un numero limitato di variabili. Test parziali di Mantel ipotizzano che popolazioni al centro dell’antica distribuzione, i Balcani meridionali, siano stati favorite o nella loro potenziale d’espansione, nei loro confini di distribuzione settentrionale o in entrambi. Questo scenario implica un fattore ecologico ottimale nel centro che diminuisce nel perimetro di distribuzione. Ma quali sono i parametri causali? Supponiamo piuttosto che i rettili termo-sensibili siano stati affetti dal clima. Tranne per il gradiente di temperatura dipendente dalla latitudine, un secondo gradiente relativo alle condizioni climatiche si instaurò attraverso l’Europa durante il periodo post-glaciale (Kutzbach & Guetter 1986). Mentre il regime di temperatura annuale nell’Europa orientale mostra cambiamenti stagionali significativi, l’influenza atlantica nell’Europa occidentale ha un effetto compensatore che risulta in estati più fresche. Perciò le temperature estive nelle regioni climatiche continentali offrono condizioni termali più adatte ai rettili (Hecht 1928; Spellerberg 1976) e, di conseguenza, potrebbero aver favorito un’espansione post-glaciale. Nelle regioni più orientali, tuttavia, le condizioni favorevoli sono contrastate da climi continentali estremi come l’aumento dell’aridità. Le popolazioni balcaniche come fonte principale della ricolonizzazione dell’Europa non è l’unica caratteristica della E. orbicularis. Altri organismi come la Zootoca (Guillaume et al. 1997) o la Corthippus (Cooper et al. 1995) ovviamente condividono alcuni schemi di distribuzione e percorsi di re-immigrazione con la E. orbicularis. E’ rilevante che solo le testuggini con il lignaggio I e II che si sono differenziate più tardi rispetto agli altri lignaggi (i.e. nell’era del Pleistocene) hanno sviluppato strategie per sfruttare estati brevi ma calde. Nelle zone nordiche della distribuzione di solito depositavano un’unica grande covata all’anno (JabLo~ski & Jab~Lo~ska 1998), mentre due o più covate sono comuni nelle regioni meridionali (Bannikow 1951; Kotenko & Fedorchenko 1993; Fritz et al. 1995). La caratteristica è parallela a tratti morfologici rilevanti. Malgrado una colorazione scura o una grande massa corporea possono essere trovate in alcune sottospecie meridionali di E. orbicularis, le zone nordiche di distribuzione sono abitate esclusivamente da forme grandi e di colore scuro attribuibili alla sottospecie orbicularis (Fritz 1992).

Conclusioni

I rettili terrestri e palustri sono, a causa delle loro limitate capacità di dispersione e la dipendenza dalla temperature, indicatori sensibili per lo studio dei processi biogeografici. Le deduzioni dall’organizzazione geografica di modelli genomici contribuiscono sostanzialmente sia alla geografia storica che alla biogeografia degli organismi. Come descritto sopra, solo alcuni studi filogeografici trattano intere distribuzioni di specie in tutta l’Europa. In questo contesto la Emys orbicularis sembra essere una delle specie di vertebrate più frammentate nella regione paleoartica occidentale. Deduciamo questo da alcuni tratti caratteristici della loro storia, come la bassa competizione tra specie di testuggini palustri, relativamente basse capacità dispersive e un’alta longevità che potrebbe proteggere le popolazioni locali dall’estinzione durante disturbi a breve termine dell’habitat. Le ere glaciali hanno avuto dei notevoli impatti sulla fitogeografia della E. orbicularis, incluso un ricorrente ritiro dall’Europa centrale. Si suppone che i rifugi siano localizzati nell’Europa meridionale e nel Medioriente. Il nostro studio ha confermato che durante l’ultimo pleniglaciale la Emys era effettivamente presente in tutte le penisole meridionali europee, ma che ipotetici rifugi a nord 40N latitudine sono infondati. Quindi, non è stata trovata nessuna prova che delle regioni, ad esclusione di minuscole aree nell’estremo sud dell’Europa e nella vicina Asia, fossero climaticamente adatte per le Emys durante il pleniglaciale. L’attuale distribuzione degli aplotipi ipotizza  un’espansione post-glaciale che differisce sostanzialmente dai modelli simmetrici d’immigrazione che implicano una struttura filogeografica dipendente semplicemente dalle distanze migratorie o un gradiente di temperatura da sud a nord. Invece, la E.orbicularis mostra la tendenza a una modalità di espansione centrifuga probabilmente causata da un declino di fattori ecologici nel perimetro di distribuzione. La profonda divergenza genetica tra i lignaggi mitocondriali principali indica che erano già avvenuti sorprendenti processi di speciazione. Si potrebbe discutere che almeno i lignaggi III, V e VI rappresentano specie distinte, come i dati morfologici (Fritz 1998) e molecolari corrispondono attraverso le aree di distribuzione delle sottospecie. Per risolvere questa questione tassonomica, la Emys deve essere studiata nel suo complesso usando loci nucleari con particolare enfasi sulle zone di contatto dei lignaggi identificati in questo studio.

Ringraziamenti

Questo studio è stato sostenuto da sovvenzioni da: Deutsche Forschungsgemeinschaft (Jo 134/7–1, Wi 719/181), Deutsche Gesellschaft für Herpetologie und Terrarienkunde, Naturschutzbund Deutschland, DAAD, e Boehringer Mannheim. R. Thorpe ha gentilmente fornito un programma computerizzato per i test parziali di Mantel. Siamo molto in debito con i seguenti scienziati e colleghi per aver fornito campioni e sostenuto le ricerche sul campo: T. Amann; C. Ardizzoni; H. Artner; A. Bertolero; P. Beyerlein; N. Braitmayer; H. Bringsøe; J. Buskirk; A. Capolongo; D. Capolongo; G. Damer; V. Ferri;

M. Grabert; H. J. Gruber; S. Hanka; U. Heckes; P. Heidrich; N. Jablo’nska; A. Jablo’nski; N. Jendreztke; C. Keller; B. Kemmerer; V. Keuchel; K. Klemmer; Z. Korsós; V. LaCoste; R. Mascort; W. Matzanke; J. Mayol; F. Meyer; S. Mitrus; B. Opuoba; V. F. Orlova; A. Sanchez; B. Sättele; N. Schneeweiß; A. Seidel; E. Snieshkus; E. Taskavak; S. Tripepi; C. Utzeri; M. Veith; R. Wicker; M. Zemanek; M. Zuffi. Ringraziamo Bob Wayne e due recensionisti anonimi per i loro commenti sul manoscritto. 

Bibliografia

Allard MW, Miyamoto MM, Bjorndal KA, Bolten AB, Bowen BW (1994) Support for natal homing in green turtles from mitochondrial

DNA sequences. Copeia, 1994, 34–41.

Arctander P (1988) Comparative studies of avian DNA by restriction fragment polymorphism analysis. Journal für Ornithologie, 129, 205–216.

Arnold EN, Burton JA (1978) A Field Guide to the Reptiles and Amphibians of Britain and Europe. Collins, London.

Avise JC, Arnold J, Ball RM et al. (1987) Intraspecific phylogeography: the mitochondrial bridge between populations genetics and systematics. Annual Revues in Ecology and Systematics, 18, 489–522.

Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtle’s pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Molecular Biology and Evolution, 9, 457–473.

Bannikow AG (1951) Data on the knowledge of the biology of Kazach turtles (in Russian). Uchenie Zapiski, Moskowskij Gorodskoj Pedagogiceskij Institute W. P. Potemkina Moscow, 18, 131–166.

Bickham JW, Lamb T, Minx P, Patton JC (1996) Molecular systematics of the genus Clemmys and the intergeneric relationships of emydid turtles. Herpetologica, 52, 89–97.

Bowen BW, Kamezaki N, Limpus CJ, Hughes GR, Meylan AB, Avise JC (1994) Global phylogeography of the loggerhead turtle (Caretta caretta) as indicated by mitochondrial DNA haplotypes. Evolution, 48, 1820–1828.

Bowen BW, Meylan AB, Ross JP, Limpus CJ, Balazs GH, Avise JC (1992) Global population structure and natural history of the green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution, 46, 865–881.

Bowen BW, Nelson WS, Avise JC (1993) A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proceedings of the National Academy of Sciences, USA, 90, 5574–5577.

Burke RL, Leuteritz TE, Wolf AJ (1996) Phylogenetic relationships of Emydine turtles. Herpetologica, 52, 572–584.

Chkhikvadze VM (1989) Neogene Turtles of the USSR (in Russian). Metsnierba, Tiflis.

Cooper SJ, Ibrahim KM, Hewitt GM (1995) Postglacial expansion and genome subdivision in the European grasshopper Corthippus parallelus. Molecular Ecology, 4, 49–60.

Desjardins P, Morais P (1990) Sequence and gene organisation of chicken mitochondrial genome. Journal of Molecular Evolution, 212, 599–634.

Doutsos T, Kontopoulos N, Frydas D (1987) Neotectonic evolution of northwestern continental Greece. Geologische Rundschau, 76, 433–450.

Encalada SE, Lahanas PN, Bjorndal KA, Bolten AB, Myamoto MM, Bowen BW (1996) Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Molecular Ecology, 5, 473–483.

Endler JA (1977) Geographic Variation, Speciation and Clines. Princeton University Press, Princeton. Excoffier E, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among haplotypes: application to human mitochondrial DNA restriction data.

Genetics, 131, 479–491.

Frenzel B (1967) Die Klimaschwankungen des Eiszeitalters. Die Wissenschaft. Viehweg & Sohn, Braunschweig.

Fritz U (1992) Zur innerartlichen Variabilität von Emys orbicularis(LINNAEUS, 1758), 2. Variabilität in Osteuropa und Redefinition von Emys orbicularis orbicularis (LINNAEUS, 1758) und E. o. hellenica (VALENCIENNES, 1832) (Reptilia, Testudines: Emydidae). Zoologische Abhandlungen Staatliches Museum für Tierkunde Dresden, 47, 37–77.

Fritz U (1998) Introduction to zoogeography and subspecific differentiation in Emys orbicularis (Linnaeus, 1758). In: (eds Fritz U, Joger U, Podloucky R, Servan J) Proceedings of the EMYS Symposium Dresden 96. Mertensiella 10, pp. 1–27. Warlich, Rheinbach.

Fritz U, Lenk P, Lenk S (1995) Sumpfschildkröten (Emys orbicularis galloitalica) aus Südfrankreich und Latium. Herpetofauna, 17, 13–20.

Gaffney ES, Meylan PA (1988) A phylogeny of turtles. In: (ed. Benton MJ) The Phylogeny and Classification of the Tetrapods, pp. 157–219. Clarendon Press, Oxford.

Guillaume C-P, Heulin B, Beshkov V (1997) Biogeography of Lacerta (Zootoca) vivipera: reproductive mode and enzyme phenotypes in Bulgaria. Ecography, 20, 240–246.

Haskell A, Pokras MA (1994) Nonlethal blood and muscle tissue collection from redbelly turtles for genetic studies. Herpetological Review, 25, 11–12.

Hecht G (1928) Zur Kenntnis der Nordgrenzen der mitteleuropäischen Reptilien. Mitteilungen aus dem Zoologischen Museum in Berlin, 14, 502–596.

Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.

Hutchison JH (1981) Emydoidea (Emydidae, Testudines) from the Barstovian (Miocene) of Nebraska. Paleaobios, 37, 1–6.

Jablonki A, Jablonska S (1998) Egg-laying in the European pond turtle Emys orbicularis L. in Leczynsko-Wlodawskie Lake District (E-Poland). In: (eds Fritz U, Joger U, Podloucky R, Servan J) Proceedings of the EMYS Symposium Dresden 96. Mertensiella 10, pp. 141–146. Warlich, Rheinbach.

Kotenko TI, Fedorchenko AA (1993) Reproductive cycle of Emys orbicularis in the Danube Delta. In: (eds Llorente GA, Montori A, Santos X, Carretero MA) 7th Ordinary General Meeting Sociatas Europaea Herpetologica, p. 86. Universitat de Barcelona, Barcelona.

Kumar S, Tamura K, Nei M (1993) MEGA: Molecular Evolutionary Genetics Analysis, Version 1.0. Pennsylvania State University, PA, USA.

Kutzbach JE, Guetter PJ (1986) The influence of changing orbital parameters and the surface boundary conditions on climate simulations for the past 18,000 years. Journal of the Atmospheric Sciences., 43, 1726–1759.

Lamb T, Avise JC (1992) Molecular and population genetic aspects of mitochondrial DNA variability in the diamond terrapin, Malaclemys terrapin. Journal of Heredity, 83, 262–269.

Lamb T, Avise JC, Gibbons JW (1989) Phylogeographic patterns in mitochondrial DNA of the desert tortoise (Xerobates agassizi), and evolutionary relationships among the North American gopher tortoises. Evolution, 43, 76–87.

Lamb T, Lydeard C (1994) A molecular phylogeny of the gopher tortoises, with comments on familial relationships within Testudinoidea. Molecular Phylogenetics and Evolution, 3, 291.

Lanave C, Preparata G, Saccone C, Serio G (1994) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20, 86–93.

Lattin G de (1949) Beiträge zur Zoogeographie des Mittelmeergebietes. Verhandlungen der Deutschen Zoologischen Gesellschaft Kiel, 1948, 143–151.

Lenk P, Joger U, Fritz U, Heidrich P, Wink M (1998) Phylogeographic patterns in the mitochondrial cytochrome b gene of the European pond turtle, Emys orbicularis (Linnaeus, 1758). In: (eds Fritz U, Joger U, Podloucky R, Servan J) Proceedings of the EMYS Symposium Dresden 96. Mertensiella 10, pp. 159–175. Warlich, Rheinbach.

Lenk P, Wink M (1997) A RNA/RNA heteroduplex cleavage analysis to detect rare mutations in populations. Molecular Ecology, 6, 233–237.

Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.

Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences, USA, 90, 4087–4091.

Maxson LR, Sarich VM, Wilson AC (1975) Continental drift and the use of albumin as an evolutionary clock. Nature, 255, 397–400.

Osentoski MF, Lamb T (1995) Intraspecific phylogeography of the gopher tortoise, Gopherus polyphemus: RFLP analysis of amplified mtDNA segments. Molecular Ecology, 4, 709–718.

Reinig WF (1937) Die Holarktis. Fischer, Jena.

Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223–225.

Rögl F, Steininger FF (1983) Vom Zerfall der Thethys zu Mediterran und Paratethys. Annalen des Naturhistorischen Museums in Wien, 85/A, 135–163.

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York.

Santucci F, Emerson BC, Hewitt GM (1998) Mitochondrial DNA phylogeography of European hedgehogs. Molecular Ecology, 7, 1163–1172.

Santucci F, Nascetti G, Bullini L (1996) Hybrid zones between two genetically differentiated forms of the pond frog Rana lessonae in southern Italy. Journal of Evolutionary Biology, 9, 429–450.

Schneider S, Kueffer J-M, Roessli D, Excoffier L (1997) ARLEQUIN. Department of Anthropology, University of Geneva, Geneva.

Schröder B (1986) Das postorogene Känozoikum in Griechenland/Ägäis. Geologie von Griechenland. In: (ed. Jacobshagen V) Beiträge zur Regionalen Geologie der Erde, Vol. 19, pp. 209–240. Borntraeger, Berlin.

Spellerberg IF (1976) Adaptations of reptiles to cold. In: (eds Bellairs Ad’A, Cox CB) Morphology and Biology of Reptiles, Linnean Society Symposium, Vol. 3, pp. 261–285. Academic Press, London.

Suc JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307, 429–432.

Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland.

Szyndlar Z (1991) A review of neogene and quaternary snakes of central and eastern Europe. Part II: Natricinae, Elapidae, Viperidae. Estudios Geologicos, 47, 237–266.

Taberlet P, Bouvet J (1994) Mitochondrial DNA polymorphism, phylogeography and conservation genetics of the brown bear (Ursus arctos) in Europe. Proceedings of the Royal Society of London, B, 255, 195–200.

Taberlet P, Fumagalli L, Wust-Saucy A, Cosson J (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464.

Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.

Thorpe RS (1991) Clines and cause: microgeographic variation in the Tenerife gecko Tarentola delalandii. Systematic Zoology, 40, 172–187.

Thorpe RS, Brown RP, Day M, Malhotra A, McGregor DP, Wüster W (1994) Testing ecological and phylogenetic hypotheses in microevolutionary studies: an overview. In: (eds Eggleton P, Vane-Wright R) Phylogenetics and Ecology, pp. 189–206. Academic Press, London.

Walker D, Burke VJ, Barak I, Avise JC (1995) A comparison of mtDNA restriction sites vs. control region sequences in phylogeographic

assessment of the musk turtle (Sternotherus minor). Molecular Ecology, 4, 365–373.

Walker D, Nelson WS, Buhlmann KA, Avise JC (1997) Mitochondrial DNA phylogeography and subspecies issues in the monotypic freshwater turtle Sternotherus odoratus. Copeia, 1997, 16–21.

Wallis GP, Arntzen JW (1989) Mitochondrial-DNA variation in the crested newt superspecies: limited cytoplasma gene flow among species. Evolution, 43, 88–104.

Wink M (1995) Phylogeny of Old and New World vultures (Aves: Accipitridae and Cathartidae) inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Zeitschrift für Naturforschung, 50c, 868–882.

Wright S (1978) Evolution and Genetics of Populations. University of Chicago Press, Chicago.

Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution, 39, 306–314.

Questo studio fa parte del PhD di Peter Lenk dedicato alla micro-evoluzione, alla filogenia e alla genetica di conservazione della testuggine palustre europea. Ha condotto il lavoro molecolare nei laboratori di Michael Wink. Peter Lenk sta anche lavorando sulla microevoluzione di alcuni serpenti colubridi europei e la filogenia molecolare di serpenti Viperini. Uwe Fritz è Direttore Delegato e Curatore del Dipartimento di Erpetologia del Staatliches Museum für Tierkunde Dresden e ha fornito la maggior parte dei campioni. Il suo interesse particolare è la tassonomia e la variabilità dei chelonidai Paleartici e dall’Asia sud-orientale. Ulrich Joger, Curatore dei Vertebrati all’Hessian State Museum, Darmstadt, Germania insegna anche zoologia ed ecologia desertica all’Università di Darmstadt. Progetti di ricerca correnti includono la filogenia molecolare di mammiferi, rettili e anfibi, l’esplorazione erpetofaunistica di molti paesi dell’Africa e dell’Asia, l’ecologia di anfibi e rettili del deserto. E’ interessato all’applicazione di metodi molecolari alla filogenia e alla microevoluzione di molti gruppi di rettili. Michael Wink è Direttore dell’Institut für Pharmazeutische Biologie all’Università di Heidelberg. Oltre a progetti di ricerca in fitochimica e in ecologia chimica dirige un laboratorio per studiare l’evoluzione molecolare e l’ecologia di animali e piante.

 

 

 

Letto 8631 volte

In collaborazione con

Sponsor

Social

Contatti 

Tarta Club Italia
Via della Repubblica, 39a

47042 Cesenatico (FC)

Partita IVA: 03515480402 - C.F. 90049330401

 

TartaClubItalia

Scrivi al TartaClubItalia, mandaci una mail a infotartaclubitalia@gmail.com.

Scrivi al Webmaster per problemi inerenti al sito.

DMCA.com Protection Status

Chi è online 

Abbiamo 149 visitatori e nessun utente online

Statistiche visite 

Oggi680
Ieri3623
Questa settimana19534
Questo mese15112
Da sempre14115727

Powered by CoalaWeb
#5e5f72 #66fe00 #77b5b3 #dc1469 #232021 #a55778